If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+4y-70=0
a = 1; b = 4; c = -70;
Δ = b2-4ac
Δ = 42-4·1·(-70)
Δ = 296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{296}=\sqrt{4*74}=\sqrt{4}*\sqrt{74}=2\sqrt{74}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{74}}{2*1}=\frac{-4-2\sqrt{74}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{74}}{2*1}=\frac{-4+2\sqrt{74}}{2} $
| 0.0000175=x^2+0.0000175x | | n+77=476 | | b-356=335 | | 18=s/21 | | y+336=863 | | w/21=18 | | v-102=373 | | g+18=45 | | k+23=100 | | 3x-2=x5 | | X+11=x-20=9 | | 8x-30=4x+60 | | 2x-10=1.5x | | 2x+10=1.5x | | (40-1.50)x=(9+1.50)x | | (40-1.50x)=9 | | (40-1.50x=9 | | 0.67x=0.9 | | 6x+1/15-2x-4/7x-16=2x+1 | | x^=46x | | H(x)=3x^2+11 | | 4x+3(.5x)=132 | | X^2+12.5x+36=0 | | z-35=10 | | 28r=868 | | h-108=252 | | 503=y+292 | | 27c=459 | | 27c=457 | | 0.75x=22 | | P=11+4d/9 | | 5y^2-40y=80 |